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Coupled-Mode Design of Ferrite-Loaded
Coupled-Microstrip-Lines Section

Jerzy Mazur, Mateusz Mazur, and Jerzy Michalski

Abstract—A coupled-mode approach is applied to a microstrip
circulator with a distributed section of axially magnetized ferrite
coupled lines (FCLs). The equivalent model of the FCL junction
is found, which includes gyromagnetic interaction between prop-
agated and evanescent isotropic modes. On the basis of the cou-
pling process, the ferrite modes in the FCL are defined. From the
decomposition of these modes, the waves in each line of the struc-
ture are determined. The mode matching is applied at the junction
ports, which allows one to obtain the scattering matrix of the mi-
crostrip FCL. Validity of the approach is verified by checking the
scattering parameters of the FCL section and comparing the nu-
merical results with available measurements. The proposed model
gives the properties with regards to the impedance matching and
ferrite section dimensions, which can help the design of the FCL
nonreciprocal devices. As an example, the-parameters of an FCL
circulator are presented.

Index Terms—Circulators, ferrite-coupled-lines junction, scat-
tering matrix.

I. INTRODUCTION

T HE distributed circulators and isolators, which make use
of the coupled slot-lines sections with an axially magne-

tized ferrite, were discovered in [1]. The operation principle of
these devices has been explained in [2] and [3] using the bimode
coupled-mode (CM) model employing the Faraday’s rotation
phenomenon appearing in the ferrite coupled lines (FCLs). It
was found that although the Faraday’s effect assured only the
nonreciprocal phase shift, the section of FCL demonstrated full
nonreciprocal properties when the structure was fed by even or
odd excitations. Thus, these requirements are satisfied in FCL
devices [3], which are constructed as a cascade of an FCL sec-
tion with 0 /180 hybrid junction. One should note here that the
overall performance of these nonreciprocal devices depends on
the appropriate scattering characteristics of the individual com-
ponents. Using the CM model of FCL lines, the scattering ma-
trix of the FCL section has been derived in [2] and [3]. However,
there is no analysis of the matching conditions without which
the proper compact of the FCL with external sections cannot
be designed. Teoh and Davis have presented in [4] and [5] the
different attempts to solve the problem in terms of superposi-
tion of the dominant ferrite modes propagating along the FCL.
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Their normal mode approach confirmed the CM operation con-
ditions of the FCL. However, the matching problem was also
neglected. Therefore, the satisfactory design procedure of FCL
junctions in principle has not been achieved. Recently, Xie and
Davis [6] have examined the reflection and power transfer of the
even and odd isotropic modes at the interface between the cou-
pled isotropic and ferrite lines. They solved the problem using
the mode-matching approach where the dominant modes of the
cascaded dielectric and ferrite lines were applied in the field ex-
pansion. However, their solution has omitted the excitation of
the interface by the ferrite modes so that the scattering problem
at the considered interface has been only partially analyzed.
Hence, their theoretical prediction is applicable to the case when
the second interface of the FCL section is perfectly matched. We
can conclude, therefore, that the scattering problem of the mag-
netized FCL section has not yet been solved sufficiently.

In this paper, the mode-matching approach is also applied to
define, for the first time, the scattering matrix of the FCL sec-
tion. The problem is solved by matching the fields of isotropic
and ferrite modes at both of the interfaces of the section. The
ferrite modes are defined using the CM model of the ferrite mi-
crostrip lines [9], where these modes are performed by gyro-
magnetic coupling of the propagating and evanescent isotropic
modes. The fields at the ferrite region are defined by two for-
ward and backward traveling dominant and evanescent higher
order ferrite modes. The two dominant and two higher order
evanescent isotropic modes are taken into account as input and
output waves at the isotropic regions of the structure. The de-
composition of these modes into the waves, appearing at the
microstrip ports of the junction, makes it possible to incorpo-
rate their eigenfields into a matching process at each port’s in-
terface. In this way, the complete scattering matrix of the FCL
structure is finally formulated. The usefulness of the developed
theory is demonstrated by the comparison of the scattering char-
acteristics calculated for the FCL microstrip section with exper-
imental ones presented by Daviset al. in [7]. The overall scat-
tering characteristics of the microstrip circulator comprising the
investigated FCL section in cascade with a microstrip T-junc-
tion are also presented.

II. CM M ODEL OF FCL

The investigated guide is assumed to be a symmetrical struc-
ture of lossless coupled lines with a slab of an axially magne-
tized ferrite, as shown in Fig. 1. The transverse fieldsand
in the guide are expressed in terms of eigenfunctions of a
second base isotropic waveguide. According to the CM proce-
dure [8], the Maxwell’s equations of both guides are combined
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(a) (b)

Fig. 1. Coupled lines loaded with a slab of an axially magnetized ferrite.
(a) Ferrite guide. (b) Corresponding dielectric basis guide.

together and integrated over the cross section of the investigated
structure.

Due to the orthogonality of the base eigenfunctions, the inte-
gral equations are reduced to a matrix eigenvalue problem, and
solutions correspond to the modal fields and propagation con-
stants of the ferrite guide. The resulting system of linear equa-
tions has the ordinary form [9] written as

(1)

where

(2)

(3)

and denote the wavenumber and intrinsic impedance in
vacuum, and and are the propagation constant, wave
impedance, and the wave admittance of theth isotropic mode,
respectively. are diagonal elements and is the off-di-
agonal element in the relative permeability tensor of the ferrite.
The coefficient defines the perturbation of theth isotropic
mode, while the coefficient determines the gyromagnetic
coupling between theth and th isotropic modes. The cou-
pling occurs in the ferrite region where the transverse
and vectors are perpendicular to each other. Moreover, the
following condition for the coupling coefficients is satisfied, i.e.,

. The unknown voltage and current coeffi-
cients are functions of only, with dependence , where

is propagation constant.

III. SCATTERING MATRIX OF MICROSTRIPFCL

Following the above outlined model, the coupled ferrite mi-
crostrips shown in Fig. 2 are first investigated. It is assumed that
the ferrite is weakly magnetized, thus, and coef-
ficient in (1). Additionally, it was found in [9] that at
least four isotropic modes sufficiently define the CM model of
the microstrip FCL. There are two dominant evenand odd
quasi-TEM modes and two higher modes, which correspond to
the even and odd quasi- waves, and only these modes
are used in the field expansion. Applying the distribution of the
magnetic-field vectors of isotropic modes, shown in Fig. 3,

Fig. 2. Structure of microstrip FCLs.

(a) (b)

(c) (d)

Fig. 3. Schematic distribution of the transverse electric and magnetic fields of
isotropic modes in the cross section of the FCL. (a) Even dominant mode1.
(b) Odd dominant odd2. (c) Higher order even mode3. (d) Higher order odd
mode4. Symmetry plane: magnetic wall for even modes and electric wall for
odd modes.

to (3), we expect that the coupling of dominant modes as well as
of the higher ones can appear only in the ferrite region situated
near the slot between the strips. Moreover, the additional cou-
pling of the dominant even (odd) mode and higher odd (even)
mode can occur in the ferrite regions beneath the strips. If we
include the above assumptions into CM equations and assume
the wave propagation along the ferrite guide as , then (1)
can be reduced to the following matrix forms:

(4a)

and

(4b)

where and are known propagation constants of the
dominant and higher isotropic modes, respectively. Their wave
admittance is defined as follows, i.e., and

. The quantities are
coupling coefficients of isotropic modes. The propagation con-
stant of the CMs is found by equating the determinant of
the coefficient matrix of (4a) to zero. It yields the four eigen-
values of (4a) defining propagation constants of funda-
mental and of higher order ferrite modes for both
propagation directions. On the other hand, if the propagation
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constants are known, then the characteristic equation of (4a)
can be turned on to yield the coupling coefficients. The re-
quirement that the determinant of (4a) is zero for each value
of yields the set of four nonlinear algebraic
equations for , which can be solved numer-
ically. To verify the solutions, we need the approximate values
of the coupling coefficients. It can be found using (2) or the ef-
fective mode formulation proposed in [9]. The eigenfunctions
of (4a) corresponding to the eigenvalues de-
fine the complete dependence of the modal voltages

of the ferrite modes given by

(5)

where

and

In addition, are unknown con-
stants. Suppose we apply the eigenfunction ofth mode as a
partial voltage source . The response

will then be the th partial field voltage of theth mode
due to source . Hence, the coefficients and

are the nondimensional terms.
Applying (5) in (4b), the vector of modal currents

is defined as

(6)

In matrix , the elements
are the partial transfer wave admittance for and

the th mode wave admittance for . According to the mode
expansion, the electric and magnetic fields in the ferrite section
taken as the superposition of the four normal ferrite modes can
be expressed as

(7)

where and are eigenvectors of the transverse electric and
magnetic fields of isotropic modes.

To decompose the fields and into two lines constituting
the FCL section, we consider the schematic distribution of
and depicted in Fig. 3. It is seen that the eigenfields of domi-
nant even and odd modes have and components asso-
ciated with each of the lines. Similar components of the higher
even and odd modes are and . The symmetry plane
of the isotropic guide is defined as the magnetic and electric

Fig. 4. Top view of the microstrip FCL junction consisting of input dielectric
(D) and ferrite(F ) sections. This configuration was proposed by Daviset al.
in [7].

wall for the even and odd modes, respectively. Therefore, we
can assume that the values of these components for the domi-
nant modes, as well as for the higher order ones, are equal at
the both lines. Moreover, the eigenfields of the dominant even
and the higher odd modes are in-phase, while they are 180
out-of-phase for the dominant odd mode and higher even one.
Making use of the above fields properties in (7), the distribution
of the electric and magnetic fields along both lines can be
written as

(8)

where superscripts 1 and 2 denote the FCL lines, and
and are the eigenfields at the both

lines of the FCL.
Let us now examine the four-port section of the FCL shown

in Fig. 4, where microstrip ports1, 2and3, 4are located at the
interfaces and , respectively. The field expansion
in the ports is limited only to the two modes. There are domi-
nant quasi-TEM and higher quasi- modes of a single
microstrip line. Note that their eigenfields can be considered as
close to the ones of the isotropic modes associated with the one
of the FCL line. Therefore, it is possible to express the trans-
verse fields components at the microstrip ports of the junction
as follows:

(9)

where refers to the port number, and superscripts 1
and 2 relate to the modes employed in the ports. Now we apply
the continuity conditions for the tangential-field component of
electric and magnetic fields at the interfaces and .
It corresponds to the matching of the transversal field compo-
nents (7) and (9) at the port interfaces when the influence of their
transverse distributions on the neighboring ports can be omitted.
Imposing the continuity conditions at yields the set of
equations that are dot-multiplying by conjugate values of eigen-
fields and , respectively, and integrated over the

-port interface. Hence, for , we obtain

(10)
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where and the
submatrices and are given as

(11)

and

(12)

It is conventional to assume the opposite direction of the current
vectors of ports placed at the interface . Hence, the trans-
formations of the continuity conditions at yield

(13)

where and .
Now we wish to eliminate the vector of unknown coefficients
. From (10), it is possible to relate the coefficients to the

voltages and currents at the ports of the plane , assuming
that the has an inverse

(14)

Applying (14) in (13), the voltages and currents at the ports of
the plane are then given by

(15)

where is a two modal transfer

matrix of the FCL section under test. Thematrix can be now
converted into the scattering matrix, which gives the essential
power relations of the device in terms of wave amplitudes. First,
we relate the voltages and currents to the wave amplitudes as

(16)

where and represent anth input and output wave, respec-
tively, at the th port. is the wave impedance of ath wave.
We assume that this impedance at all ports is identical. Next,
substituting (16) into (15) and after some of the mathematical
rearrangement, the two-modal scattering matrixof the inves-
tigated four-port FCL junction takes the form

(17)

(a) (b)

Fig. 5. Schematic representation of an FCL junction magnetized: (a) axially
and (b) transversely.

where and for th wave are the four-element
column vectors of the wave amplitudes at the ports, andfor

is a complex 4 4 submatrices of the scattering ma-
trix of interest. Furthermore, we have assumed that evanescent
modes are sufficiently attenuated near the transition plane of the
ports. The propagating dominant modes are then still referred to
the transition planes and, for dominant mode propagation in the
ports, the scattering matrix of the junction can be taken as sub-
matrix of (17), which is read as

(18)

where

(19)

and the subscripts denote the junction ports.

IV. PROPERTIES OFFCL JUNCTIONS

Now let us consider the influence of the symmetry plane
on the scattering properties of the FCL junctions shown in

Fig. 5. This plane, as perpendicular to the magnetization, can be
taken as the field symmetry wall. It is a magnetic and electric
wall when the ports1, 3 or 2, 4 are reinforced by even- and
odd-mode excitation, respectively. It means that the reciprocal
transmission can be observed between these ports, while the
transmission between the remaining ports of the junction can be
nonreciprocal. From the symmetry, the following relationships
can be established for the scattering matrix elements:

(20)

Applying (20) to (19) yields an matrix as follows:

(21)

Assume now that the junction [see Fig. 5(a)] is completely
matched and the ports1 and2 and ports3 and4 are mutually
isolated. It means that diagonal elements and , as well
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as nondiagonal elements and in (21) are equal zero.
The unitary property of then yields the equations

(22a)

(22b)

(22c)

One way for (22a)–(22c) to be satisfied is when ,
which results from equal power coupling between the lines of
the junction. Equations (22a) and (22b) are now employed to
give . Equation (22c) is then satisfied when the
phase difference . Hence,
we obtain independent of
FCL parameters. If we choose the reference planes of the four
ports so that and ,
then from (22c), it can be shown that . Hence,
the nonreciprocal phase shift occurs in FCL when .
There is the optimal nonreciprocal effect when or
180 and or , respectively. It implies a gyrator
effect between the FCL ports1 and4, as well as2 and3. Obvi-
ously, it makes it possible to use the FCL sections in the design
of nonreciprocal devices. Consider now the other way that al-
lows one to satisfy the equations resulting from unitary condi-
tions of (21). We introduce the matching conditions and assume
that the ports1, 3 and2, 4 connected by the lines are now iso-
lated. The elements and are then equal to zero
and the unitarity of (21) yields the following equations:

(23)

Here, we have two solutions of (23), i.e.,
or and or . It indicates the operation of
the structure as a four-port circulator. However, the assumption
that the ports connected here by the lines are uncoupled cannot
be accepted because the signal transmission between these ports
will be observed. Hence, the circulation effect should not be ex-
pected in the considered FCL configuration shown in Fig. 5(a).
Now we consider another model of the FCL [see Fig. 5(b)] in
which the ports1, 2and3, 4are coupled by the lines, whereas
ports1, 3and2, 4are disconnected. It means that the mentioned
isolation condition can be satisfied and the circulation effect can
be met in this configuration. Thus, this configuration relates
to the experimental FCL structure investigated in [10], where
the circulation effect was confirmed and qualitatively explained.
However, the different field phenomena determine the operation
principle of the considered FCL structures. The Faraday phe-
nomenon is possible in the axially magnetized FCL, while the
field displacement effect occurs in the transversely magnetized
structure. Therefore, the other CM model is needed to explain
the operation principle of the transversely magnetized FCL. In-
deed, the CM model of the FCL presented here can be used
only to design the axially magnetized FCL junction shown in
Fig. 5(a).

Fig. 6. Cross section of the ferrite section of the microstrip FCL junction
presented in Fig. 4. Structure parameters in the text follow from [7].

V. NUMERICAL RESULTS

Having defined the scattering model of the microstrip FCL
structure, we now investigate the behavior of the microstrip fer-
rite four-port junction that was designed and measured by Davis
et al. in [7]. For the design of the junction, they applied new
normal-mode conditions, which they recently developed in [6]
for the model of the FCL. These conditions allowed one to find
not only the optimal length of the ferrite section, but to also es-
timate the matching properties of the FCL junction. For realiza-
tion of the junction, they have applied the section of ferrite cou-
pled microstrips whose cross section is given in Fig. 6. It is made
on a saturated ferrite substrate with saturation mag-
netization kA/m, dielectric permittivity ,
and thickness mm. The widths of the microstrips are

mm and they are separated by the slot mm.
The microstrip ports of the junction are designed on the di-

electric substrate with and have the same dimen-
sions as the ferrite microstrip lines. The measured responses of
the FCL junction of 48-mm length are presented in [7, Figs. 4
and 5]. These results indicate that the considered FCL oper-
ates optimally near the 6.6-GHz frequency where most of the
signal energy is transmitted to one of the output ports for even
(or odd)-mode excitation. It only confirms the power exchange
ability of the two-coupled lines resulting from Faraday’s rota-
tion effect of the ferrite section. Note that a similar, but recip-
rocal effect can appear at the sections of the coupled lines con-
taining, for example, anisotropic medium, where the change of
the polarization state of the wave is possible. Therefore, the non-
reciprocal behavior of the FCL can be identified only in the case
when the phase shift additionally occurs for the reverse direc-
tion of magnetization on the FCL. In such a case, the rotation
direction is reversed and the signal energy should be transmitted
to the second output port of the FCL. However, this effect has
not been measured in [7] where the properties of the structure
are presented only for one direction of the magnetization. The
normal-mode approach [6] was developed [7] to model the be-
havior of the measured FCL junction. The results are presented
in [7], showing good agreement between the experimental and
theoretical values of the operation frequency (6.6 GHz) esti-
mated for minimum reflection. It indicates, in principle, that
theory [6] can be applied to the design and optimization of the
microstrip FCL section. However, values of the scattering char-
acteristics theoretically predicted in [7] did not agree well with
the measured ones. For comparison, their measured values of in-
sertion loss and isolation at 6.6 GHz are approximately 1.5 dB
and better then 30 dB, whereas the calculated ones are 0.4 and
11 dB, respectively. Such disagreement could be expected since
theory [6] concerned the FCL, whose second interface was per-
fectly matched. In our opinion, even small reflection from the
second FCL interface can provide such differences. Therefore,
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Fig. 7. Dispersion characteristics of the dominant ferrite and isotropic modes
of the microstrip FCL shown in Fig. 6 (spectral-domain approach). Propagation
coefficients of isotropic modes:� ; � and ferrite modes:k ; k .

Fig. 8. Computed coupling coefficientsC ;C = C ;C for the
microstrip FCL shown in Fig. 6.

the CM model presented here will be now applied to reexamine
the properties of the FCL junction investigated in [7]. According
to CM requirements, the wave parameters of the isotropic modes
and the coupling coefficients are needed to model the junc-
tion. Using the spectral-domain theory solution of the ferrite mi-
crostrip-line structure (see Fig. 6), we have computed the prop-
agation coefficients of ferrite and isotropic modes. The com-
plete dispersion characteristics of dominant ferrite and isotropic
modes are presented in Fig. 7. Having defined the values of
propagation coefficients of both ferrite and isotropic modes, we
have solved the system of characteristic equations of (4a) to de-
termine the coupling coefficients. Their frequency response is
shown in Fig. 8. We can see that they decrease in the range
beyond the cutoff frequencies of the dominant ferrite modes.
It attests that the investigated FCL operates above, but near,
the cutoff frequencies. We now reexamine the properties of the
FCL under test, assuming that its ports are terminated with wave
impedance of the external isotropic microstrips. First, we calcu-
late the variation of the scattering parameters of the FCL versus
the length of the ferrite section at the fixed 6.6-GHz frequency.
The results are shown in Fig. 9.

The important effect we observe is the exchange of the signal
energy between both lines of the structure. The recommended
length of the FCL is defined for a symmetrical split of the en-
ergy, which appears here for a length of 47 mm. It is worth

Fig. 9. Computed scattering parameters of (Daviset al.) microstrip FCL
junction (see Figs. 4 and 6) at the frequencyf = 6:6 GHz for different length
of the ferrite section (signal enters port1).

Fig. 10. Frequency-dependent scattering characteristics of the (Daviset al.)
microstrip FCL junction (see Figs. 4 and 6). The length of the ferrite section is
equal to 48 mm. The junction is excited from port1 of the FCL.

noting that this value agrees well with the 48-mm length pre-
dicted in [7]. However, we shall investigate (Daviset al.) the
FCL junction of 48-mm length.

Fig. 10 shows the frequency dependent scattering character-
istics calculated for excitation of the junction in port1. Note
that an almost symmetrical split of the energy occurs in the fre-
quency band from 6.2 to 6.7 GHz. If the phase difference be-
tween the output signals and is equal to 0 or 180 ,
then an even or odd mode can be seen at the output ports. It
was found that the excitation in port 1 results in the even mode
emerging at ports3 and4. The similar transmission is observed
when the structure is excited in port3, while the wave incident
in port 2 or 4 produces in the output ports the field distribu-
tion corresponding to the odd mode. The converse effect occurs
if the biasing magnetic field is reversed. Additional computa-
tion was carried out for even and odd excitation of the junc-
tion. The results are presented in Fig. 11, showing agreement
between our theory and the experimental values of [7]. Diver-
gences occur mainly between the measured and calculated op-
eration frequency of 6.6 and 6.45 GHz, respectively. The mea-
sured isolation is closer to our theoretical value than to the ones
presented in [7]. For example, our theory, as well as experiment,
shows that the isolation at the operation frequency is higher than
25 dB. It was also found that, for reverse magnetization, the
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(a)

(b)

Fig. 11. Computed insertion loss and isolation of the (Daviset al.) microstrip
FCL junction (see Figs. 4 and 6) for: (a) odd- and (b) even-mode input at the
ports1 and2. Comparison with experimental results from [7] (dashed lines:
experiment [7], solid line: CM theory).

Fig. 12. Schematic representation of the circuit of a three-port distributed
microstrip FCL circulator simulated as a cascade of the investigated FCL and
microstripT junction. Ports impedanceZ � 50 
. Details given in the text.

excitations of the junction by the even and odd mode give an
output at the opposite ports of those presented in Fig. 11. This
result clearly shows the FCL nonreciprocal behavior required
for the three-port circulator. The three-port circulator consists
of an FCL junction in cascade with a hybrid, as shown in
Fig. 12. Thus, the T-junction ensures even-mode excitation of
the FCL, which is in need of circulator operation.

We simulated a T-structure realized on the same dielectric
substrate as the input sections of the FCL junction. Its cou-
pled dielectric microstrip lines feeding FCL have the same di-
mensions as ferrite lines, and they are 5 mm in length. The
quarter-wave transformer (see Fig. 12) is used to match the
characteristic impedance 29.4of a T-junction input line and
impedance of port3. In Fig. 13, the scattering char-
acteristics of the hybrid T-junction are shown as the function

Fig. 13. Scattering characteristics of the microstripT junction used in the
structure of the FCL circulator shown in Fig. 12.

Fig. 14. Performance of the distributed FCL circulator presented in Fig. 12.

of frequency. The best operation is seen in the 6–7-GHz band,
where the even-mode output from its ports1 and2 is evident.
The overall scattering matrix of the circulator is calculated by
combining directly the appropriate scattering matrices of the
cascaded T-junction and four-port FCL.-parameter character-
istics are shown in Fig. 14, where the three-port circulator be-
havior is clearly presented. In particular, the computed charac-
teristics demonstrate asymmetrical operation of the device. For
FCL circulators, this effect was previously predicted in [4]. It
can be seen that maximum isolations and , together with
return losses and are better than 25 dB at the operation
frequency of GHz. However, values of these parame-
ters decrease to 15 and 12 dB at the 6.6- and 5.7-GHz frequen-
cies, respectively. At these frequencies, the isolation and
return loss of 19 dB are obtained. One should note that the
isolations and return losses of the circulator varying between
10–20 dB at the 5.7–7.3-GHz frequency band with maximum
1.5-dB insertion losses over this range. These initial results were
obtained for a nonoptimized structure. Although the result is not
very encouraging to promote the microstrip FCL circulator, it
proves, however, the validity of the conception of this device
design and shows that further work is needed to allow one to
design the optimal structure.

VI. CONCLUSION

The CM method has been successfully applied to solve the
eigenvalues problem of axially magnetized ferrite-coupled mi-
crostrip lines. On the basis of gyromagnetic coupling between
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the dominant propagating and higher order evanescent isotropic
modes, the eigenmode solution of the FCL was found to bear
through their decomposition of the eigenfields at each line of
the guide. The results of the analysis were used to derive a scat-
tering matrix for the four-port FCL junction. This problem was
solved by matching the fields of isotropic and ferrite waves at
each port of the investigated junction. Considering the sym-
metry property of the structure with respect to the magnetization
direction, the general nonreciprocal performance of the axially
and transversely magnetized FCL junction has been discussed.
Verification of the modeling was demonstrated by comparing
numerical results with an experiment presented in [7]. The good
agreement with experimental results indicates that the presented
model can be used in microstrip FCL junction design. It makes
it possible to investigate the novel nonreciprocal devices com-
prising the section of the FCL. As an example, the three-port cir-
culator constructed as the cascade of the microstrip T-junction
and FCL section has been described with promising scattering
performance.
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